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Random Sequential Adsorption: Relationship to Dead
Leaves and Characterization of Variability
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A new construction for the planar unbounded random sequential adsorption
(RSA) model is presented, which allows for a direct comparison with Mathe-
ron's ``dead leaves'' model. Furthermore, for the case of disks with random radii
the problem of statistical determination of the proposal radius distribution is
discussed. Finally, second order characteristics related to the pair correlation
function are suggested for describing the variability of the RSA disk systems.

KEY WORDS: Coverage; dead leaves model; Mate� rn's hardcore process;
random disk packing; random sequential adsorption; two-point distribution;
variability of spatial disk distribution.

1. INTRODUCTION

The random sequential adsorption (RSA) model has attracted considerable
attention as random packing model in Euclidean spaces of various dimen-
sions and bounded subsets thereof.(1, 2) Both the RSA model on a lattice
and the continuous RSA model have many applications.(1, 3)

This paper considers the unbounded, and continuous case; the packed
objects are disks with either constant or random radii. We restrict ourselves
to the planar case; nevertheless all the presented concepts extend directly
to higher dimensions. A mathematical definition of the RSA model is
recalled and a new construction is given in Section 3, which is used to
show that the RSA model is closely connected to Matheron's dead leaves
model, (4, 5) another model for randomly distributed disks. Both models
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contain the same subsystem of hard disks, the system of intact disks of the
dead leaves model. If the disks have constant size, the subsystem can also
be identified as a limit case of Mate� rn's second hard-core process.(6�8) The
dead leaves model is used in microscopy and other fields to describe piled
layers of grains.(5, 9) Figure 1 below shows a simulation restricted to a
rectangle.

Sections 4 and 5 focus on the two-point (or binary) radius distribution
which has already been examined by Meakin and Jullien,(3) whose main
goal was the characterization of the time dependence of the incomplete
RSA model and the determination of the final coverage. Here a statistical
problem for an RSA model with disks of variable radii is discussed. Assume
that an empirical structure is given which can be described by an RSA
model of unknown radius distribution. Then one is confronted with two
radius distributions: that from which the disks are selected for attempted
addition, the proposal distribution, and the radius distribution of adsorbed
disks, the resulting distribution. The radii corresponding to the latter tend
to be smaller than those belonging to the proposal distribution; only in the
case of constant radii both (trivial) distributions coincide. In practical

Fig. 1. A simulation of Matheron's dead leaves model. The ``intact'' disks form a system of
non-intersecting disks, which is a subset of the RSA model.

970 Stoyan and Schlather



problems (given only the pattern of disks) usually the resulting distribution
is known, while the proposal distribution is unknown. The latter has to be
determined for simulating and modelling.

Furthermore the variability of the spatial pattern of the complete RSA
model, which is usually described by means of the pair correlation function,
is considered. Namely, in the case of variable radii the characterization of
the relationship between mutual disk positions and radii is also of interest.
To this end suitable tools are presented, namely the ``mark connection
functions'' pij (r).

2. THE INFINITE RSA MODEL

In this section a mathematical definition is recalled and a new con-
struction is given for the homogeneous and isotropic planar RSA model,
i.e., for the thermodynamic limit. (In the following the term RSA model is
used also for the ``marked point process'' that consists of the disk centres
marked by the disk radii.)

The homogenous and isotropic, unbounded RSA model is defined as
the limit of a spatial birth process(8, 10) as suggested by J. Mo% ller; (11) this
definition can be seen as an extension of the definition of the well-known
car parking problem to higher dimensions.(1) A spatial birth process is a
family of homogeneous point processes in the plane indexed by the time t,
or a time continuous Markov process whose states are point patterns. At
isolated instants of time, a further point is ``born,'' i.e., added to the existing
point pattern where the probability of a change depends only on the
current configuration of the process. Births are controlled by a birthrate b,
a positive function b(x, .) with

|
W

b(x, .) dx<�

for any bounded set W and any configuration . of disks. The probability
that a birth occurs within the set W in the infinitesimal time interval
[t, t+ds], given that the process has configuration . at time t, equals

ds |
W

b(x, .) dx+o(ds)

In the case of varying radii the configurations . consist of marked points
(x; r), where x is the disk centre and r the corresponding radius. The set-
theoretic union of all the disks B(x, r) of a configuration is denoted by s. .
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Let fpr be the probability density function of the proposal radius distribu-
tion. Then the birth rate of the RSA birth process is

b((x; r), .)=(1&1s.�B(o, r)(x)) fpr(r) (2.1)

where X�B(o, r)=�y # X B( y, r) and 1A is the indicator function of the
set A, i.e., 1A(x)=1 for x # A and 0 otherwise. The birth-rate simply
vanishes in all the points x where a disk of radius r cannot be placed.

The RSA model at the jamming limit is obtained for t � �, while the
configuration at time t=0 is the empty set.

The term ``time'' has a different meaning than in Meakin and Jullien:(3)

There, time is proportional to the number of points attempted to add. Here
the points depend on the time through a Poisson process. The latter is of
unit rate if the sampling window W is a set of unit area.

An alternative construction of the RSA model is based on the system
of marked points (x; t, r) where x gives the location, t the instant of time,
and r the random radius. The points (x; t) follow a homogeneous Poisson
point process of unit intensity on R2_[0, �).

In order to obtain the RSA model in the jamming limit, the system of
marked points is thinned in infinitely many steps according to the following
rule; in each step the thinning is performed on the whole plane.

First Step. A point (x; t, r) is retained if there is no other point
(x$; t$, r$) with

t$<t and |x&x$|<r+r$ (2.2)

where | } | denotes the Euclidean distance. Each retained point (x; t, r)
eliminates all the points (x*; t*, m*) with

t*>t and |x*&x|<r*+r (2.3)

Clearly, as the collection procedure by rule (2.2) and the elimination
procedure by rule (2.3) are applied sequentially and as condition (2.2) and
(2.3) are exclusive, the order in which the points are collected respectively
eliminated is unimportant.

Second Step. Rule (2.2) and subsequently rule (2.3) are applied to
the reduced system of marked points; and so on.

By suppressing the time mark t of the retained marked points, one
obtains the RSA model in the jamming limit.

Remarks. 1. The thinning steps do not correspond to a ``natural
time'' like the birth time in the birth process construction.
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2. Instead of a Poisson process on R2_(0, �), any other point process
that is homogeneous and isotropic could be used at the very beginning.
Such an initial point process could then consider interactions between
particles in the surroundings of an absorbing medium, in contrast to the
CSA model(1) which takes into account nearest neighbour relations on an
adsorbing medium.

3. THE DEAD LEAVES MODEL

A famous, homogeneous and isotropic, model in spatial statistics is the
dead leaves model.(4, 5, 9) In two dimensions, it can be obtained by placing
disks (with constant or random radii) randomly and uniformly on the
plane during the time interval (&�, 0] so that (i) subsequent disks may
(partially) cover already existing disks and (ii) infinitely many disks are
placed in any subset W of the plane with positive area. At time t=0 the
system is in its time-stationary state and yields a tessellation of the plane
as shown in Fig. 1. (The disks can be interpreted as dead leaves and the
union of all the disks as a layer of dead leaves.)

In the following we concentrate on an alternative construction of the
dead leaves model which is useful for the comparison with the RSA model
and Mate� rn's second hard-core process and which is attractive also for
simulation purposes.(9, 12) At time t=0 the space is empty. Then, step by
step, disks are randomly dropped onto the plane, so that parts of a new
disk that intersect already existing disks become invisible. (Such a simula-
tion resembles watching falling leaves from below.) The incidence times, the
locations, and the radii of the disks are given by the system of marked
points (x; t, r) already defined in Section 2. For practical simulation it is
important to note that whenever a (finite) sampling window is completely
covered by disks, the simulation result will not change when further disks
are added in the background, and the simulation can be stopped.(9, 12)

A disk is called ``intact'' if it is not (partially) covered by any other
disk. In the case of the alternative construction, a disk B(x, r) placed at
time t is intact if and only if there is no disk B(x$, r$) that has appeared at
time t$<t such that |x$&x|�r+r$, i.e., if it is a disk retained in the very
first step (2.2) of the construction in Section 2. Thus, the system of intact
disks of the dead leaves model is a homogeneous and isotropic subsystem
of the RSA model. Consequently, its coverage is smaller than the jamming
limit coverage of the RSA model. Nevertheless, this system may be of inter-
est since it allows for analytical calculations; at least in some particular
cases formulae can be given for the pair correlation function and the
coverage. The latter is 1�4 if the disks have fixed radius, or, more generally,
if the ``leaves'' are convex and their shape, orientation, and finite size are
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fixed.(13) (The coverage is smaller for variable objects; the case of isotropic
line segments is discussed in Penttinen and Stoyan.(14))

Assume that 8 is the homogeneous planar marked Poisson process of
intensity * whose marks m are uniformly distributed on [0, 1]. Let h be a
positive hard core distance. Then Mate� rn's second hard-core process(6)

consists of all the unmarked points x in 8 where the disk B(x, h) does not
contain any point of 8 with a mark smaller than m. As a * � �, Mate� rn's
second hard-core process coincides with the system of intact disks of the
dead leaves model if the disks have constant diameter h.

If * is the mean number of disk centres per unit area, the pair correla-
tion function g(r) is such that the probability of having a disk centre in
each of the two infinitesimal areas dA1 and dA2 a distance r apart equals
g(r) *2 dA1 dA2 . For the particular case of disks with constant diameter,
the pair correlation function for the intact disks of the dead leaves model
is obtained from the formula for the product density of Mate� rn's second
hard-core process in Stoyan et al., (8) p. 164, as * � �. For disks of
diameter h=1, one gets

g(r)={2?�1 (r)
0

for r�1
otherwise

where 1 (r) equals the area of the union of two disks that have unit radius
and whose centres are a distance r apart.

4. RELATIONSHIP BETWEEN PROPOSAL AND
RESULTING DISTRIBUTION

Whenever the RSA model is a candidate for modelling a given system
of non-intersecting disks with variable radii, the proposal distribution of
the radii has to be determined. By no means the resulting distribution, i.e.,
the distribution of the radii of the visible disks should be used, since this
would lead to disks that are too small. Unfortunately, the relationship
between the observable resulting distribution and the proposal distribution
is very complicated, as the simulations in Meakin and Jullien(3, 15) indicate.
However, the special case of the two-point distribution, which has already
been studied by several authors for different purposes, (3, 16) allows for direct
inference.

Exemplarily, the case where the radii equal 1 and 2 is considered in the
following. Denote by f the probability of taking a 1-disk in the proposal dis-
tribution. Let f1( f ) be the frequency of observing a 1-disk in the jamming
limit. Clearly, f1(0)=0, f1(1)=1, and f1( f )� f. Figure 2 shows the func-
tion f1( f ) for 0< f �1. The values were obtained by simulation which was
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Fig. 2. The fraction f1 of 1-disks as a function of the probability f of attempting a 1-disk in
the two-radii RSA model with radius ratio 1:2.

carried out similarly as in Meakin and Jullien(3) and Wang, (17) based on 25
simulations of the RSA model on a 1000_1000 square. For f1(0+), the
simulations yielded a value a bit greater than 0.5, namely f1(0+)=0.5041
\0.0002. (If the ratio of the radii equals 1:3 and 1:4 then f1(0+) equals
0.7434\0.0002 and 0.8499\0.0002, respectively.)

Figure 2 can be used for solving the statistical problem mentioned in
the introduction. Assume that an RSA model is observed where the disks
have radii 1 and 2. While the 1-disk probability f belongs to the proposal
distribution and is unknown, the frequency of 1-disks in the pattern can be
observed. The latter can be considered as an empirical value of f1( f ) and
can be used to estimate f by means of Fig. 2.

5. VARIABILITY OF DISK POSITIONS

Usually, the variability of point systems (like the variability of the disk
centres of the RSA model) is characterised by means of the pair correlation
function g(r).(18, 19) Figure 3 shows the pair correlation function for the
RSA model as discussed in Section 4, where f =0.5. This curve (as well as

975Random Sequential Adsorption



File: 822J 681808 . By:SD . Date:11:08:00 . Time:09:21 LOP8M. V8.B. Page 01:01
Codes: 1963 Signs: 1533 . Length: 44 pic 2 pts, 186 mm

Fig. 3. The pair correlation function g(r) of the point process of disk centres for the two-
radii RSA model with f =0.5 and radii 1 and 2. Each dot of the curve in the top right corner
is a point estimate of the curve; the abscissa difference between consecutive points equals
0.0003.

the curves for pij (r) below) is based on 1200 samples on a 1500_1500
square. It has cusps at r=2 and r=3 which correspond to pairs of disks
with radius 1 and to pairs of 1- and 2-disks, respectively. Similar to the
pair correlation function of the RSA model with monodisperse disks of
radius 1,(18) the pair correlation function exhibits a minimum to the left of
r=4 and a local maximum to its right. However, in the binary case there
is a jump discontinuity at r=4, cf. Figs. 3 and 4.

The mutual positions of 1- and 2-disks can be characterised by func-
tions gij (r) that describe the probability of finding a pair of points at dis-
tance r where one of the points is the centre of an i-disk and the other one
that of a j-disk, for i, j=1, 2. The functions gij give an integrated information
about the spatial structure of the unmarked point process of disk centres
(which is also described by g(r)) and the interactions of points of class i
with points of class j. The effect of such a mixing up is illustrated by Fig. 4
which shows the function g11(r) for f =0.5 and radius ratio 1 :2, and the
function g(r) in the monodisperse case with radius 1. Both curves show
qualitatively a similar behaviour. Especially, they do not show that the
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Fig. 4. The pair correlation function g(r) of a monodisperse distribution with radius 1 and
the function g11(r) of a binary distribution with f =0.5 and radii 1 and 2.

interaction properties of the 1-disks change dramatically at r=3 in the
binary case.

Unlike the function gij (r) the ``mark connection function'' pij (r) is able
to unfold information about the interaction of points of the classes i and j.
It equals the conditional probability of having an i-disk and a j-disk centred
at two given points at distance r, under the condition that there are indeed
disk centres at both points.(20) If pk is the fraction of k-disks in the resulting
distribution, then

pij (r)= pi pj gij (r)�g(r) for r>0 with g(r)�0

Figure 5 shows the functions p11(r), p12(r) and p22(r), which are
defined only for r>2 and satisfy p11(r)+ p12(r)+ p22(r)=1 for any r>2.
As r � �, the three functions tend to p2

i =( f1(0.5))2, 2p1 p2=2f1(0.5)
(1& f1(0.5)), and p2

2=(1& f1(0.5))2, respectively. These limits result from
the asymptotic independence of the radii 1 and 2 for large distances r. For
r<3 only 1-1 pairs are possible, and therefore p11(r)=1 for those r. At
r=3 and r=4 there are jumps since 1-2 pairs respectively 2-2 pairs cannot
occur for smaller distances.
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Fig. 5. The functions pij (r) for the two-radii RSA model with f =0.5 and radii 1 and 2.
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